
N90 2 :

Reflections on the Relationship Between

Artificial Intelligence and Operations Research

Mark S. Fox

Robotics Institute and Computer Science Department
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Historically,partofArs rootsliein OperationsResearch.Itisthe goalof thispaper to explore
how AI has extended the problem solvingparadigm developedin OR. In particular,by examining
how schedulingproblems are solvedusingOR and AI,we demonstratethatAI extendsOR's model of
problem solvingthroughthe opportunisticuse ofknowledge,problem reformulationand learning.

1. Introduction

Artificial Intelligence (AI) has come along way during the last 35 years. Like any "new" decision
technology, the publicity that heralds its appearance tends to sweep aside technologies, such as
Operations Research (OR), that have come before 1. Not surprisingly, the mere mention of the phrase
Artificial Intelligence is liable to elicit from the Operations Research practitioner, a variety of
responses from adulation to incredulity. In my experience, neither responses are appropriate, but
are due primarily to a lack of knowledge of the field's basic methods. The g_al of this paper is to
dispel many of the misconceptions that surround AI technology. By examining both approaches to
problem solving, both the AI and OR practitioner should obtain a better appreciation of each other's
approaches. The ultimate goal being to merge the approaches.

Both OR and AI investigateproblem solvingmethods. As Simon has noted,they share the same
roots[19],but divergedatan earlypointin theirhistory.A common distinctionbetween AI and OR
has been thatOR dealswith wellstructuredproblems and AI dealswith illstructuredproblems.I
believeitistimetoput thisdistinctiontorest.

Looking back at what has been written on the topic, Simon [18] defines a problem as being well
structured if the means to solving the problem can be operationalized, in a computational sense.
This tended to be a concern in the early days of computation 2. Another view is that an ill structured
problem is one which cannot be completely defined. E.g., objective function, constraints. Rapid
prototyping is a means of elicting problem structure. A third view [16] is that a problem is ill
structured if there only exists weak methods to solve it. Weak methods make weak demands on the
task environment.

It is the last view that I believe is important. It primarily focuses on the performance of the
problem solver. Weak methods tend to perform poorly because they are unable to reduce search
complexity. Weak methods are not unique to AI nor OR. They each have their share of weak and
strong methods. The real issue is what is the nature of the strength behind OR and AI problem
solving theories?

One popularview isthatAI problem solvingdraws itsstrengthfrom heuristics.Gloverexplores

the roleof heuristicsin[11],Grant also extollsthe importance of heuristicsin constructingan
aircraftengineeringmanagement system,FIXER [12].Another view isthatAI methods are based

on heuristicsearch and symbolic models vs OR's optimizationa la linearprogramming and

IA concern also raised by Sutherland [22].

2for example, the issue of effectivecomputability as described in Church's th_sis [3].

i-: '" : 38.3

quantitative modeling [19]. The view that will be explored in this paper is that the AI's strength is
related to but more subtle than either of these notions.

The rest of this paper addresses this issue. The next two sections explore the strength of the OR
approach and AI approach to problem solving respectively. A vareity of methods are described for

each applied to the problem of factory scheduling. Based upon these examples the subsequent
section explores the relationshiop of AI to OR.

2. OR Approach To The Scheduling Problem

Operations Research draws its problem solving strength from two inter-related sources: the

modeling of problems using algebraic constraints, and the optimization of these models by means of
mathematical programming -- linear programming being the core problem solving technique. There
are other important areas of OR, such as queuing theory, simulation and network analysis, but it is
mathematical programming that represents the bulk of the research.

In this section, we investigate the representation and solution of the one machine, non-preemptive
weighted tardiness scheduling problem: Given a set of n jobs, sequence them through a single
machine so that the total tardiness of all the jobs is minimized. We examine a number of problem
solving techniques from an adequacy and efficiency perspective.

2.1. Modeling

The one machine scheduling problem can be modeled by a set of algebraic constraints. Given n
jobs each with processing time Pi, due date Di, and weight wi:

n jobs.

Pi: processing time for job i

Di: due date for job i

wi: weight of job i

The objective is to minimize the total weigthed tardiness T subject to the following set of
constraints:

E wj5
j=l

,! J

s't" t_= (_IPiXik) = Cj for allj

q - Dj = 7_ - Ej for allj

I1

i_l Xij = I for allj

_ Xij = 1 for all i
,/=1

Xiy _ {0,1} integrality

All Variables > 0

The core of this model is the variable Xij which specifies the scheduling solution using a positional

notation. That is, variable Xq is one if the job is initially in position i is scheduled finally in position
j, otherwise it is zero. The constraints restrict the use of X so that no job can be in more than one
position.

384

While not necessarily obvious, the representation is powerful none-the-less.

2.2. Linear Programming

The first step in solving this problem is to see whether linear programming can be applied

directly. In this case, the variable Xij is an integer and cannot take on fractional values. Any
solution generated using linear programming may assign fractional values to X which does not have
an interpretation here.

2.3. Branch and Bound

Since X is integer, the most appropriate approach is to consider integer programming. The

simplest algorithm is to generate a tree of alternative assignments to the variables X_j. Starting with

the root node, the first two arcs would assign the variable Xl, 1 the values 0 and I respectively. Each

of their binary branches would assign the variable Xl, 2 the values 0 and 1 respectively, and so on. At
each node, constraints are tested to see if the variables generated to that point satisfy them. In
particular, a node may assign a job to more than one position in the queue. Nodes that violate
constraints are pruned. The full decision tree has n! leaves. Search, even with pruning, is

exponential in the size of the problem.

Another approach is to estimate the optimal solution and use it as stopping criteria in the
branching search. This is can be accomplished by relaxing the integer constraint. This creates an
L.P. which is easy to solve. The solution is a lower bound. If this solution is very close to our
currently best feasible solution, then we have verified we are very near optimal, and do not have to
continue the search.

Or we may use the L.P. solution as a starting "superoptimal," and try to make small changes
restoring it to feasibility. That is, we search for a nearby feasible point. If so, weare done; if not, do
more extended search by dual ascent of similar technique.

The branching procedure can be extended to fullbranch and bound ifthere was a way to prove

that parts of the tree are inferior,then prune these parts away without ever checking. We can use

the L.P. solution as the lower bounding procedure, but would have to solve an L.P. at each node in
the search tree.

In each case, the size of the search tree still grows exponentially.

2.4. Lagrangian Relaxation

Another approach to solving the scheduling is to employ Lagrangian relaxation.

"Lagrangian relaxation is based upon the observation that many difficult integer programming
problems can be modeled as a relatively easy problem complicz_ted by a set of side constraints. To
exploit this observation, we create a Lagrangian problem in which the complicating constraints are
replaced with a penalty term in the objective function involving the amount of violiation of the
constraints and their dual variables." [8]

The idea is that the resulting integer program is supposed to be easier to solve. Since some

constraints are missing, we will get a lower bound on the s_,lution for any value of the lagrange
multipliers.

385

n

i=1 i=_

- j

s't" i_l (_lPiXik) = CJ= for allj

cj- oj=

x_/_ {O,H

All Variables > 0

for allj

integrality

Now we vary the multipliers,looking for values that willmake the subsumed constraints true,so
that the lower bound at that point willin addition be optimal.

For large problems the complexity ofthe search isprohitibitive.

2.5. Dispatch Simulation

Another approach to solving the scheduling problem is to use dispatch rules as part of a
simulation. A rule is a heuristic that prioritizes jobs in the queue for a machine. In the case where
there is a single statistic to be optimized, such as tardiness, dispatch rules have been shown to

perform well. But when additional statistics are to be optimized, such as work in process, setups,
etc., dispatch rule perform poorly [2].

2.6. OR Methodology

As Simon has noted [19], the emphasis of OR is on mathematical models and their optimization. It
appears, at least from our examples, that the dominant optimization method for problems that
cannot be solved directly using L.P. is to recast them as linear problems by the process of
reformulation. Solutions to this reformulation are then used to guide a more general search process.
The solution procedure is as follows:

1. Optimization via Constraint Satisfaction: In this case, a set of linear constraints entail

a structure whose properties are known and can be taken advantage of when
performing search (e.g., simplex).

2. Reformulation: For complex integer problems, simpler reformulations of the problem
are solved in order to provide guidance in solving the more complex version.

3. Simulation: Myopic rules are used to make local decisions hopng that one or more
macro statistics will be optimized (e.g., SPT minimizes weighted tardiness).

3. AI Approach To The Scheduling Problem

As in OR, Artificial Intelligence has more than one method of problem solving: deduction,

constraint satisfaction and heuristic search. But the 'Key" insight from which AI draws its strength
is best articulated in the Physical Symbol System definition of Newell & Simon [17]. A physical
symbol system has the necessary and sufficient means for general intelligent action. A physical
symbol system is "a machine which produces through time an evolving collection of symbol
structures" and is capable of: Designation and Interpretation.

From this,the Heuristic Search Hypothesis is derived: Solutions to problems are represented as

symbol structures.A physical symbol system exercisesitsintelligencein problem solvingby search --

that is,by generating and progressively modifying symbol structures until it produces a solution

structure [17].The Problem Space operationalizes the concept of a phsycial symbol system. A
problem space iscomposed of

386

• States which are collectionsoffeatures that define some situation,

• Operators, that transform one state intoanother, and

• An evaluation function, that rates each state in the problem space.

Search begins at an initial state,and the problem is solved when a path isfound from itto a goal
state.

In this section we explore a more complex version of the factory scheduling problem. In this
version:

• There are n jobs.

• Each job has a process graph, each node in the graph represents an operation,and each

path through the graph isa possibleprocess plan.

• Each operations requires zero or more resources, including machines, tooling,material
and resources.

• Alternatives may be specifiedfor each required resource.

• Jobs arriveat random times into the factoryand have varying due dates.

As in the section on OR, we will firstlook at the representation of the problem, followed by a
successive set of models to solve it.

3.1. Modeling

AI Knowledge representation research focuses on the development of ontologies and semantics
that:

• span the set of concepts required to solve a problem,

• precisely and unambiguously represent concepts at all levels of granularity,

• provide a single representation that is understood and used by more than one
application (other, more efficient representations may be constructed from this
representation as required by an application), and

• be easilyunderstood by the people who construct them.

Consider the following paragraph describing a factory activity:

The milling operation precedes the drilling operation. It is composed of two steps: setup and run.
Setup takes one hour and run time is 10 minutes. Two resources are required. A five poind wrench
and an operator. The wrench i_sonly required during setup. The operation is peformed in cost center
48.

Figure 3-1 is an example of the representation of the knowledge in that paragraph. It is relational

in form. Figure 3-1 divides the knowledge into two types: activity and state. A state description
describes a snapshot of the world before an activity is performed. For example "cost center 48

possess a wrench" is a state description. It must be true in order to enable the milling activity to
occur. States and activities are linked via causal relations. A state describes what must be true of

the world to enable an activity to occur. In addition, activities may be defined at multiple levels of
abstraction. Milling is refined into two sub-activities: the setup and running of the machine. Lastly,

we must represent time. Setup, in time, occurs before the milling run. Time is not absolute, it is
relative. When describing the factory floor, it is atypical to use absolute time periods, instead,
activities are described as preceding each other; and hence, once the time of one activity is
determined the time of all the other activities related to it can be determined.

387

Knowledoe Representation

• E_Ile.R-_

A01l,eOao.

Ii

Figure 3-1: Activity Semantic Network

3.2. Constraint Directed Search

Scheduling can be viewed as search through a problem space, where states represent partial
schedules, operators extend a partial schedule defined by a state into a new sta_, and the evaluation

function rates each state in the problem space according to the known constraints. Constraint.
directed search is a form of search where constraints can be used to specify operators (e.g., operation

precedence constraints specify the next operations) and terms of the evaluation function (e.g., a due
date constraints measures slack in the schedule). The efficacy of this approach depends on the
ability of the constraints to identify the more profitable paths to pursue. Experience has shown that
this tends not to be the case.

3.3. Expert Systems

Another important insight in AI, due to Feigenbaum [6], is that the combinaterics of moving

through the problem space can be reduced by smarter selection of operators. That is by utilizing
knowledge of the domain. Domain knowledge can be represented as elaborations on the conditions of

operators, making the application of operators more sensitive to the current context. This leads to
the "knowledge-search dichotomy": the more knowledge one has the less search needs to be
performed; the less knowledge one has the more search has tobe performed to solvethe problem.

One source ofknowledge isfrom an expert.For example, rather than generate allpossiblepossible
alternative operations everytime scheduling is performed, expertise suggests that we consider

alternativesonly when capacity becomes scarce on the machines used in the standard plan:

IF Milling is to be scheduled

AND Capacity is scarce

AND Queue time is high

AND Due date is tight

THEN Consider

I. Grinding

2. Subcontracting

There are two problems with the expert sytems approach-

388

1. Problems like factory scheduling tend to be so complex that they are beyond the

cognitive capabilities of the human scheduler. Therefore, the schedules produced by the
scheduler are poor; nobody wants to emulate their performance.

2. Even if the problem is of relatively low complexity, factory environments change o/'cen

enough that any expertise built up over time becomes obsolete.

Expert systems appear to be appropriate only when the problem is both small and stable.

3.4. Hierarchical Constraint Directed Search

Since the problem cannot be solved using expert systems, more sophisticated search techniques
are required. On approach is to reformulate the problem as a simpler problem whose solution can be
used to guide the solution of the original problem. Hierarchical constraint directed search (HCDS) is
one method that embodies this approach.

Search is divided into four levels: order selection, capacity analysis, resource analysis, resource

assignment. Each level is composed of three phases: a pre-search analysis phase which constructs
the problem, a search phase which solves the problem, and a post-search analysis phase which
determines the acceptability of the solution. In each phase, ISIS uses constraints to bound, guide,

and analyze the search.

Level I is responsible for selecting the next unscheduled order to be added to the existing shop
schedule. Its selection is made according to a prioritization algorithm that considers order type and

requested due dates. The selected order is passed to level 2 for scheduling.

Level 2 represents the simpler reformulation of the original problem. It simplifies the problem by

removing both resources and constraints from consideration. It performs a dynamic programming
analysis of the plant based on current capacity constraints. It determines the earliest start time and
latest finish time for each operation of the selected order, as bounded by the order's start and due

date. The times generated at this level are codified as operation time bound constraints which serve
to influence the search at the next level.

Level 3 solves the original scheduling problem. It selects a particular routing for the order and

assigns reservation time bounds to the resources required to produce it. Pre-search analysis begins
with an examination of the order's constraints, resulting in the determination of the scheduling
direction (either forward from the start date or backward from the due date), the creation of any

missing constraints (e.g. due dates, work-in-process), and the selection of the set of search operators
which will generate the search space. A beam search is then performed using the selected set of
search operators. The search space to be explored is composed of states which represent partial
schedules.

Once a set of candidate schedules have been generated, a rule-based post search analysis
examines the candidates to determine if one is acceptable (a function of the ratings assigned to the

schedules during the search). If no acceptable schedules are found, then diagnosis is performed.
Intra-level repair may result in the re-instantiation of the level's search. Pre-analysis is performed

again to alter the set of operators and constraints for rescheduling the order. Inter-le_;el repair is
initiated if diagnosis determines that the poor solutions were caused by constraint satisfaction
decisions made at another level.

Level 3 outputs reservation time bounds for each resource required for the operations in the
chosen schedule. Level 4 then establishes actual reservations for the resources required by the

selected operations which minimize the work-in-process time.

This approach performs well when there exists adequate capacity in the factory. But in situations
where contention for resources was high, the performance of the system was no better than the
human scheduler.

389

3.5. Macro-Opportunistic Constraint Directed Search

In situations where resources are highly contended for, experience has shown that optimizing
resource allocation by scheduling operations incident with the resource produces better results than
scheduling jobs one at a time. Macro-opportunistic constraint directed search [21, 20] extends HCDS
by first analyzing the capacity requirements of all jobs in order to identify whether there is a high
degree of resource contention. If contention exists for a resource, then a resource centered scheduler

is chosen to schedule the operations incident with it (ususally a dispatch rule simualtion). The job
cenered scheduler (i.e., HCDS) is used to scheduler the jobs out from the resource. Opportunism
arises out of the systems ability to dynamically determine at any point during the construction of
schedules,primary/secondarybottlenecksand take the opportunityto schedulethem ratherthan
pursue a strictlyjobcenteredapproach.

Experiments with this approach has shown that itoutperforms both hierarchicalconstraint

directedsearchand dispatchruleapproaches. Secondly,itcan efficientlysolvetypicallycomplex
factoryschedulingproblems.

3.6. Observations

Based on the approaches described above, it is clear that AI problem solving is based upon search
and incorporates the following refinements:

• Knowledge of constraints can be used to both guide search (in the form of preferences)
and can be used to prune alternatives.

• Reformulation is used to define simpler versions of a problem whose solutions are used
to guide search in the more complex case.

• Introspection, that is the systems analysis of its own performance, is used to modify how
the system solves the problem in subsequent trials. For example, knowledge of
constraint violations can be used to automatically reformulate a problem.

• Opportunism is used to decide where the search is to proceed from. Opportunism can
exist at more than one level. At the micro level it can be used to select the next state to
extend. At the macro level, it can be used to select the perspective to apply next (e.g.,
resource vs job).

4. Reflections

It is clear from the earlier sections that both AI and OR are developing strong methods for
performing search in the problem space. OR techniques are generally, but not exclusively,
constraint directed and quantitatively modeled. AI techniques are generally, but not exclusively,
pattern directed and symbolically modeled. Part of the reason for this difference is due to ORs focus
on optimization and AI on satisficing. The former strives to select problems for which it can define
high quality, hopefully optimal, and efficient solutions while the latter strives to find high quality
and efficient solutions for everyday, messy problems.

Itis my view that much of the work in representationsand searchin AI can be viewed as a
naturalextensionofOR.

Observation 1: AI representations extend OR representations by the processes of
abstraction and differentiation.

AI Knowledge representations are qualitative abstractions of underlying quantitative models.
Abstractions can be very powerful. They enable the answering of questions that an underlying
quantitative model cannot. Lets assume that a quantitative model of time has for each activity to be
performed a start time and end time specified. With this model the following question could be
answered: "find the start and end time of activity 3 that has the longest duration given start and end
timesofactivity1 and 2,and knowing thatActivity1 isduringactivity2 which isduringactivity3.

39O

OBJECTIVE FUNCTION: MAX et 3 - st 3

CONSTRAINTS:

st I < et I st I >= st2 st2 >= st 3

st 2 < et 2 st I <= et 2 st 2 <= et 3

st 3 < et 3 et I <= et 2 et 2 <= et 3

WHERE

stl, etl, st2, et 2 are known

ALGORITHM: Simplex

One can view Allen'srelationalmodel oftime [I]as an abstraction of a quantitative model. In the

relational m_el the temporal relation during denotes that one activity is perfo_ned during the

time that another activity is performed. This relationship can be asserted without knowledge of the
actual times of each activity. If we did not know any of the start times or end times for each activity
but knew only that Activity 1 is during activity 2 which is during activity 3, we would be able to

answer the following question: "Is activity 1 during activity 3?"

GIVEN: _, _, _ are activities, and

d d

..... > >

where d is the during relation, and
d is transitive

_RITHM: Hypothesis Introduction

By its nature, an abstraction is a partial model of an underlying more complete model. In fact,
there is a contiuum of partial models one can construct. As demonstrated, each partial model

enables the answering of a different set of questions with more or less efficiency.

AI representations also enable the differentiation of concepts that are contained in a quantitative
representation. For example, there are many types of temporal relations that can be defined
between activities in addition to during, for example:

• before specifies that the end of one activity occurs before the beginning of another

• overlap specifies that the end of one activity occurs after the beginning of anther but
before the other ends

Allen [1] identifies 13 types of temporal relations.

Being able to differentiate among concepts contained within but not easily identified in a
quantitative model is a requirement for the construction of knowledge based search; the more precise
the representation, the more specific the definition of situations for which actions can be defined.

Observation 2: Search is the core method employed in both the AI and OR problem

solving models.

By definition, the core problem solving technique of AI is search; it forms the basis of the problem
space model. Search plays a similar role in OK Linear programming is a search technique where
vertices in a n dimensional space are visited to find an assignment that optimizes an objective

function. Both simplex and karmarkar algorithms exploit knowledge of the structure of the problem
space to more quickly find a solution. For integer problems, branch and bound is directly related to

AI's AI* algorithm [15]. For non-linear problems, the General Reduced Gradient method is yet
another form of search where gradients are used to decide where in the n dimensional space to move
to next.

391

Observation 3: AI extends the model of problem eolving by the opportunistic application
of situational knowledge of the domain.

The definition of a problem space includes the generation of new states through the application of

operators. Conditions of operators are actually descriptions of situations at which a particular
decision is to be m_de. Operators are created as a result of a situational analysis of how to solve a
problem.

Operators in AI are opportunisticallyapplied; at each step in the search the operator that best
matches the current situation is chosen to extend the search. The transition from one state to

another in a problem space in AI programs isrational;at each step the next step isopportunistically

made, jumping from one island of certainty to another, and one decision process to another, within

the problem space. This isin contrast tohow the next decision isselectedusing OR algorithms. By
careful analysis of the strcuture of the problem, OR has devised a more mechanistic approach in
deciding what to do next in the search process.

Observation 4: AI extends the model of problem solving from analysis to design.

As Simon has noted [19],OR optimization techniques perform analysis but are unable to perform

design. Optimization searches for an assignment of values to variables that optimize an objective

function. All variables and their domains are known apriori.But in design new variables and

constraints among them are generated during the search process. For example, in the design of a

mechanical part,the refinement ofthe part into subparts introduces new variables (representing the
subparts) and constraintsamong them.

Observation 5: AI extends the model of problem solving to include the automation of
problem formulation and re-formulation.

Within OR, problem formulation isthe purview ofthe analyst.AI methods have extended problem

solving to include the formulation of problems by the reasoned analysis of hypotheses and the

implications. For example, methods of Truth Maintenance [5,4] enable the representation and
management of sets of hypotheses that support deductions. If deductions are found to be

unacceptable, hypotheses and their dependent deductions can be withdrawn and alternative

hypotheses explored. Consequently, the selectionofmodel parameters are subject to change by the
program itself.

In constraint directed search [9,I0], pro and post-analysis of the search space allows for the

formulation and re-formulation ofthe problem via the modificationofconstraintsand the selectionof
search operators.

Lastly, the SOAR model [14i of problem solving defines the concept of "universal subgoaling" in
which new problem spaces are created where re-formulations ofthe originalproblem are worked on.

The SOAR model supports the opportunistic movement from one problem space to another at each
step during problem solving.

Observation 6: AI extends the model of problem solving to include the acquisition of
expertise.

L.P. algorithms do not learn from their experience. Running them on the same or similar problem
does not result in a net speed up in search. The use of prior experience in increasing a problem
solver's performance is never the less important. A variety of methods for learning from prior
experience have been used to increase an AI problem solver's performance over time. These include a
variety of macro-operations [7, 13] and chunking mechanism [14].

392

5. Conclusion

Both AI and OR are tryingtodevelopstrongmethods forperformingsearchin the problem space.

OR techniquesare generally(butnot exclusively)constraintdirectedand quantitativelymodeled.AI
techniquesare generally(but not exclusively)pattern directedand symbolicallymodeled. AI
methods representa powerfulextensiontothe OR model ofproblem solvingin two senses.First,the
use ofsituationalknowledge in opportunisticallyguidingsearchreducesthe combinatoricsofsearch
in many cases.Secondly,the model of problem solvingis extended to includethe automation of

problem formulation/re-formulationand learningfrom priorexperience.

Acknowledgements
This paper is based on a seminar prepared by Thomas Morton and myself. This work was

supported, in part, by the Defense Advanced Research Projects Agency under contract #F30602-88-
C-0001, and in part by a grant from Digital Equipment Corporation.

References

[1] Allen, J.F.
Towards a General Theory of Action and Time.
Artificial Intelligence 23(2):123-154, 1984.

[2] Baker, I_R.
Introduction to Sequencing and Scheduling.
John Wiley & Sons, 1974.

[3] Brainerd, W.S., and Landweber, L.H.
Theory of Computation.
John Wiley & Sons, 1974.

[4] de Kleer, J.
An Assumption-basedTMS.
ArtificialIntelligence28(2):127-162,1986.

[5] Doyle,J.
A Truth Maintenance System.

ArtificialIntelligence:231-272,April,1979.

[6] Feigenbaum, E.
The Art ofArtificialIntelligence.
In Proceedings of the International Joint Conference on Artificial Intelligence. Morgan

Kaufman, 1977.

[7] Fikes, Hart, and Nilsson.
Learning and Executing Generalized Robot Plans.
Artificial Intelligence 3:251-288, 1972.

[8] Fisher, M.L.
An Applications Oriented Guide to Lagrangian Relaxation.
Interfaces 15(2):10-21, 1985.

[9] Fox, M.S.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Technical Report, Carnegie-Mellon University, 1983.
CMU-RI-TR-85-7,Intelligent Systems Laboratory,The Robotics Institute, Pittsburgh,PA.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]-

[20]

[21]

[22]

Fox, M.S.

Observations on the Role of Constraints in Problem Solving.

In Annual Conference of the Canadian Society for the Computational Studies of Intelligence.
University of Quebec Press, 1986.

Glover, F.

Future Paths for Integer Programming and Links to Artificial Intellience.

Technical Report 85-8, Center for Applied Artificial Intelligence, Graduate School of
Business, Univesity of Colorado, 1985.

Grant, T.J.

Lessons for O.R. from A.I.: A Scheduling Case Study.

Journal of the Operational Research Society 37(1):41-57, 1986.

Korf, R.E.

Macro-Operators: A Weak Method of Learning.
Artificial Intelligence 26(1):35-77, April, 1985.

Laird, J.E., Newell, A., Rosenbloom, P.S.,
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33(1):1-64, September, 1987.

Nau, D.S., Kumar, V., and Kanal, L.
General Branch and Bound and Its Relation to A* and AO*.
Artificial Intelligence 23(1):13-28, 1984.

Newell, A.

Heuristic Programming: Ill-Structured Problems.

Progress in Operations Research :360-414, 1969.

Newell, A., and Simon, H.&

Computer Sciences as Empirical Inquiry: Symbols and Search.
Corn m unications of the ACM 19(3):113-126, 1976.

Simon, H.A.

The Structure of Ill-Structured Problems.
Artificial Intelligence 4:181-200, 1973.

Simon, H.A.

Two Heads Are Better than One: The Collaboration between AI and OR.
Interfaces 17(4):8-15, 1987.

Smith, S.F., and Ow, P.S.

The Use of Multiple Problem Decompositions in Time Constrained Planning Tasks.

In Proceedings of the Ninth International Conference on Artificial Intelligence, pages
10134015. 1985.

Smith, S., Fox, M.S., and Ow, P.S.

Constructing and Maintaining Detailed Production Plans: Investigations into the
Development of Knowledge-Based Factory Scheduling Systems.

AIMagazine 7(4):45-61, Fall, 1986.

Sutherland, J.W.

Assessing the Artificial Intelligence Contribution to Decision Technology.
IEEE Transactions on Systems, Man and Cybernetics SMC-16(1):3-20, 1986.

394

